Space charge distortions

May 11 2016 Carlos Perez

Outlook:

- How to compute distortions
- R-Distortions ALICE/PHENIX
- Charge density from FP

Molivalion

- The ions drifting slowly in the TPC can lead to a significant accumulation of charge that ultimately distort the E and B fields.
- The resulting field distortions modify the electron drift lines, introducing drift distortions that have to be corrected.
- Depending upon fluctuations, the residuals might impact significantly the tracking resolution.
- Quantification of the effect on tracking resolution is the objective of this study.

Methodology

Space Charge Distribution

E (and B) Field Distortions

Drift distortions

Space charge

Two sources:

- [1] prompt contribution of the gas ionisation by charge particles crossing the TPC
- [2] delayed contribution due to ion back flow from the GEM readout system

Space charge distribution: Method 1

Toy model: taken from ALICE TDR

$$\rho (r_{-}, z_{-}) := A \left(\frac{1 - b z + c \epsilon}{f_d r^d} \right)$$

- 1. Proportionality to the primary ionisation (i.e. local track density in a collision) r^-2 dependence and Z drift velocity
- 2. Back flow dependence as CTE in Z direction

Space charge density in the TPC volume

$$\rho (r_{-}, z_{-}) := A \left(\frac{1 - b z + c \epsilon}{f_d r^d} \right)$$

- · A = [G] x [M] x [R] x [e_0] / 76628 [in C/m]
 - e_0 (=8.85e-12): vacuum permittivity [in As/(Vm)]
 - G (=1): gas factor (prim ioniz. / drift velocity)
 - . M (=950): nominal event multiplicity
 - R (=5e4): total interaction rate [in Hz]
- ob (=1/2.5): 1/DriftLength [in 1/m]
- 0 cxe (=2/3×20)
- od (=2 for STAR f_d=1; =1.5 for ALCE)

In [38]:= Nho[r., r.] := \begin{align*} \left[\frac{2.5451^2 \cdot \cdot \frac{2.5452^2 \cdot \

Using ALICE parameters into Toy Function

Alice TPC upgrade TDR

Figure 7.7: Average space charge density for Ne-CO₂-N₂ (90-10-5), $R_{int} = 50 \, kHz$ and $\epsilon = 20$.

M: 950

INTR: SOKHZ

E: 20 (i.e. 1% in a residual gain of 2000)

Space charge distribution: Method 2

Toy simulation:

- 1. Detailed description of ionisation in gas and transport of each ion/electron + ion black flow.
- 2. More details on this method at the end of the presentation

Simulated here, but ultimately computed from data

Space Charge Distribution

E (and B) Field Distortions

Drift distortions

Simulated here, but ultimately computed from data

Space Charge Distribution

 Laplace formalism for superposition of charges (Tom's slides or backup)

E (and B) Field Distortions

Drift distortions

Simulated here, but ultimately computed from data

Space Charge Distribution

 Laplace formalism for superposition of charges (Tom's slides or backup)

E (and B) Field Distortions

Langevin formalism
 up to 2nd order
 Drift distortions

Langevin Eq:

Friction (K>O)

$$\frac{d\vec{u}}{dt} = qe\vec{E} + qe[\vec{u} \times \vec{B}] - K\vec{u}$$

drift velocity

EB force

Solution:

 $t \gg m/K$ Adiabatic approx.

$$\frac{d \vec{u}}{dt} = 0$$

Steady state

$$\vec{\mathbf{u}} = \frac{\mu \left| \vec{\mathbf{E}} \right|}{1 + \omega^2 \tau^2} \left[\hat{\mathbf{E}} + \omega \tau \left(\hat{\mathbf{E}} \times \hat{\mathbf{B}} \right) + \omega^2 \tau^2 \left(\hat{\mathbf{E}} \cdot \hat{\mathbf{B}} \right) \hat{\mathbf{B}} \right]$$

scalar mobility of the electric field

mean interaction time between drifting electrons and atoms from the gas

cyclotron frequency for electron

 $\omega \tau = q \mu B$

Drift velocity in cartesian coordinates

$$\begin{split} \mathbf{u}_{\mathbf{x}} &= \frac{\mu \ \left| \stackrel{\rightarrow}{\mathbf{E}} \right|}{1 + \omega^{2} \ \tau^{2}} \left[\hat{\mathbf{E}}_{\mathbf{x}} + \omega \ \tau \ \left(\hat{\mathbf{E}}_{\mathbf{y}} \ \hat{\mathbf{B}}_{\mathbf{z}} - \hat{\mathbf{E}}_{\mathbf{z}} \ \hat{\mathbf{B}}_{\mathbf{y}} \right) + \omega^{2} \ \tau^{2} \ \left(\hat{\mathbf{E}} \cdot \hat{\mathbf{B}} \right) \ \hat{\mathbf{B}}_{\mathbf{x}} \right] \\ \mathbf{u}_{\mathbf{y}} &= \frac{\mu \ \left| \stackrel{\rightarrow}{\mathbf{E}} \right|}{1 + \omega^{2} \ \tau^{2}} \left[\hat{\mathbf{E}}_{\mathbf{y}} + \omega \ \tau \ \left(\hat{\mathbf{E}}_{\mathbf{z}} \ \hat{\mathbf{B}}_{\mathbf{x}} - \hat{\mathbf{E}}_{\mathbf{x}} \ \hat{\mathbf{B}}_{\mathbf{z}} \right) + \omega^{2} \ \tau^{2} \ \left(\hat{\mathbf{E}} \cdot \hat{\mathbf{B}} \right) \ \hat{\mathbf{B}}_{\mathbf{y}} \right] \\ \mathbf{u}_{\mathbf{z}} &= \frac{\mu \ \left| \stackrel{\rightarrow}{\mathbf{E}} \right|}{1 + \omega^{2} \ \tau^{2}} \left[\hat{\mathbf{E}}_{\mathbf{z}} + \omega \ \tau \ \left(\hat{\mathbf{E}}_{\mathbf{x}} \ \hat{\mathbf{B}}_{\mathbf{y}} - \hat{\mathbf{E}}_{\mathbf{y}} \ \hat{\mathbf{B}}_{\mathbf{x}} \right) + \omega^{2} \ \tau^{2} \ \left(\hat{\mathbf{E}} \cdot \hat{\mathbf{B}} \right) \ \hat{\mathbf{B}}_{\mathbf{z}} \right] \end{split}$$

We can compute the path integral of the drifting electron

$$\delta_{\mathbf{x}} = \int \mathbf{u}_{\mathbf{x}} \, d\mathbf{t} = \int \frac{\mathbf{u}_{\mathbf{x}}}{\mathbf{u}_{\mathbf{z}}} \, \frac{d\mathbf{z}}{d\mathbf{t}} \, d\mathbf{t} = \int \frac{\mathbf{u}_{\mathbf{x}}}{\mathbf{u}_{\mathbf{z}}} \, d\mathbf{z}$$

$$\delta_{\mathbf{y}} = \int \frac{\mathbf{u}_{\mathbf{y}}}{\mathbf{u}_{\mathbf{z}}} \, d\mathbf{z}$$

$$\delta_{\mathbf{z}} = \int \frac{\mathbf{u}_{\mathbf{z}}}{\mathbf{u}_{\mathbf{0}}} \, d\mathbf{z}$$

$$\delta_{\mathbf{z}} = \int \frac{\mathbf{u}_{\mathbf{z}}}{\mathbf{u}_{\mathbf{0}}} \, \mathrm{d}\mathbf{z}$$

TPC case: Ez >> Ex, Ey Bz >> Bx, By

$$\mathbf{u}_{\mathbf{x}} = \frac{\mu \left| \overrightarrow{\mathbf{E}} \right|}{1 + \omega^{2} \tau^{2}} \left[\hat{\mathbf{E}}_{\mathbf{x}} + \omega \tau \left(\hat{\mathbf{E}}_{\mathbf{y}} \, \hat{\mathbf{B}}_{\mathbf{z}} - \hat{\mathbf{E}}_{\mathbf{z}} \, \hat{\mathbf{B}}_{\mathbf{y}} \right) + \omega^{2} \tau^{2} \left(\hat{\mathbf{E}} \cdot \hat{\mathbf{B}} \right) \, \hat{\mathbf{B}}_{\mathbf{x}} \right]$$

$$\mathbf{u}_{\mathbf{y}} = \frac{\mu \left| \overrightarrow{\mathbf{E}} \right|}{1 + \omega^{2} \tau^{2}} \left[\hat{\mathbf{E}}_{\mathbf{y}} + \omega \tau \left(\hat{\mathbf{E}}_{\mathbf{z}} \, \hat{\mathbf{B}}_{\mathbf{x}} - \hat{\mathbf{E}}_{\mathbf{x}} \, \hat{\mathbf{B}}_{\mathbf{z}} \right) + \omega^{2} \tau^{2} \left(\hat{\mathbf{E}} \cdot \hat{\mathbf{B}} \right) \, \hat{\mathbf{B}}_{\mathbf{y}} \right]$$

$$\mathbf{u}_{z} = \frac{\mu \left| \overrightarrow{\mathbf{E}} \right|}{1 + \omega^{2} \tau^{2}} \left[\widehat{\mathbf{E}}_{z} + \omega \tau \left(\widehat{\mathbf{E}}_{x} \widehat{\mathbf{B}}_{y} - \widehat{\mathbf{E}}_{y} \widehat{\mathbf{B}}_{x} \right) + \omega^{2} \tau^{2} \left(\widehat{\mathbf{E}} \cdot \widehat{\mathbf{B}} \right) \widehat{\mathbf{B}}_{z} \right]$$

Second order expansion: $\hat{E}_x \approx \frac{\hat{E}_x}{E_z}$ $\hat{E}_z \approx 1 - \frac{1}{2} \hat{E}_x^2 - \frac{1}{2} \hat{E}_y^2$

$$\hat{E}_{x} \approx \frac{\hat{E}_{x}}{E_{z}}$$

$$\hat{\mathbf{E}}_{\mathbf{z}} \approx \mathbf{1} - \frac{1}{2} \hat{\mathbf{E}}_{\mathbf{x}}^2 - \frac{1}{2} \hat{\mathbf{E}}_{\mathbf{y}}^2$$

$$\frac{\mathbf{u_x}}{\mathbf{u_z}} = \frac{\mathbf{1}}{\mathbf{1} + \omega^2 \ \tau^2} \ \frac{\mathbf{E_x}}{\mathbf{E_z}} + \frac{\omega \ \tau}{\mathbf{1} + \omega^2 \ \tau^2} \ \frac{\mathbf{E_y}}{\mathbf{E_z}} - \frac{\omega \ \tau}{\mathbf{1} + \omega^2 \ \tau^2} \ \frac{\mathbf{B_y}}{\mathbf{B_z}} + \frac{\omega^2 \ \tau^2}{\mathbf{1} + \omega^2 \ \tau^2} \ \frac{\mathbf{B_x}}{\mathbf{B_z}}$$

$$\frac{\mathbf{u_y}}{\mathbf{u_z}} = \frac{\mathbf{1}}{\mathbf{1} + \omega^2 \ \tau^2} \ \frac{\mathbf{E_y}}{\mathbf{E_z}} - \frac{\omega \ \tau}{\mathbf{1} + \omega^2 \ \tau^2} \ \frac{\mathbf{E_x}}{\mathbf{E_z}} + \frac{\omega \ \tau}{\mathbf{1} + \omega^2 \ \tau^2} \ \frac{\mathbf{B_x}}{\mathbf{B_z}} + \frac{\omega^2 \ \tau^2}{\mathbf{1} + \omega^2 \ \tau^2} \ \frac{\mathbf{B_y}}{\mathbf{B_z}}$$

TPC case: Ez >> Ex, Ey Bz >> Bx, By

$$\mathbf{u}_{\mathbf{x}} = \frac{\mu \left| \vec{\mathbf{E}} \right|}{1 + \omega^{2} \tau^{2}} \left[\hat{\mathbf{E}}_{\mathbf{x}} + \omega \tau \left(\hat{\mathbf{E}}_{\mathbf{y}} \, \hat{\mathbf{B}}_{\mathbf{z}} - \hat{\mathbf{E}}_{\mathbf{z}} \, \hat{\mathbf{B}}_{\mathbf{y}} \right) + \omega^{2} \tau^{2} \left(\hat{\mathbf{E}} \cdot \hat{\mathbf{B}} \right) \, \hat{\mathbf{B}}_{\mathbf{x}} \right]$$

$$\mathbf{u}_{\mathbf{y}} = \frac{\mu \left| \overrightarrow{\mathbf{E}} \right|}{1 + \omega^{2} \tau^{2}} \left[\hat{\mathbf{E}}_{\mathbf{y}} + \omega \tau \left(\hat{\mathbf{E}}_{\mathbf{z}} \, \hat{\mathbf{B}}_{\mathbf{x}} - \hat{\mathbf{E}}_{\mathbf{x}} \, \hat{\mathbf{B}}_{\mathbf{z}} \right) + \omega^{2} \tau^{2} \left(\hat{\mathbf{E}} \cdot \hat{\mathbf{B}} \right) \, \hat{\mathbf{B}}_{\mathbf{y}} \right]$$

$$\mathbf{u}_{z} = \frac{\mu \left| \overrightarrow{\mathbf{E}} \right|}{1 + \omega^{2} \tau^{2}} \left[\hat{\mathbf{E}}_{z} + \omega \tau \left(\hat{\mathbf{E}}_{x} \hat{\mathbf{B}}_{y} - \hat{\mathbf{E}}_{y} \hat{\mathbf{B}}_{x} \right) + \omega^{2} \tau^{2} \left(\hat{\mathbf{E}} \cdot \hat{\mathbf{B}} \right) \hat{\mathbf{B}}_{z} \right]$$

Second order expansion: $\hat{E}_x \approx \frac{\hat{E}_x}{E_z}$ $\hat{E}_z \approx 1 - \frac{1}{2} \hat{E}_x^2 - \frac{1}{2} \hat{E}_y^2$

$$\hat{\mathbf{E}}_{\mathbf{x}} \approx \frac{\hat{\mathbf{E}}_{\mathbf{x}}}{\mathbf{E}_{\mathbf{z}}}$$

$$\hat{\mathbf{E}}_{\mathbf{z}} \approx \mathbf{1} - \frac{1}{2} \hat{\mathbf{E}}_{\mathbf{x}}^2 - \frac{1}{2} \hat{\mathbf{E}}_{\mathbf{y}}^2$$

$$\delta_{\mathbf{x}} = \mathbf{c}_0 \int \frac{\mathbf{E}_{\mathbf{x}}}{\mathbf{E}_{\mathbf{z}}} \, \mathrm{d}\mathbf{z} + \mathbf{c}_1 \int \frac{\mathbf{E}_{\mathbf{y}}}{\mathbf{E}_{\mathbf{z}}} \, \mathrm{d}\mathbf{z} - \mathbf{c}_1 \int \frac{\mathbf{B}_{\mathbf{y}}}{\mathbf{B}_{\mathbf{z}}} \, \mathrm{d}\mathbf{z} + \mathbf{c}_2 \int \frac{\mathbf{B}_{\mathbf{x}}}{\mathbf{B}_{\mathbf{z}}} \, \mathrm{d}\mathbf{z}$$

$$\delta_y = c_0 \int \frac{E_y}{E_z} \, \mathrm{d} \, \mathbf{z} - c_1 \int \frac{E_x}{E_z} \, \mathrm{d} \, \mathbf{z} + c_1 \int \frac{B_x}{B_z} \, \mathrm{d} \, \mathbf{z} + c_2 \int \frac{B_y}{B_z} \, \mathrm{d} \, \mathbf{z}$$

First Calculations

ALICE reproduction

ALICE reproduction

ALICE reproduction

Dr detailed shape comparison

Quantitatively close, but not quite the right shape

Source of incongruence:

- We do Laplace expansion up to 15th order (ALICE 30th)
- We probe Dr at z=-0.5 cm (ALICE gets it at z=0)
- We use 1/r^2 in ICD (ALICE used 1/r^1.5 for TDR)

Estimated mean distortions in R

ALICE

Grid size:

Rad = 2.13 cm

Phi = 360 deg

Lon = 2 cm

Wednesd

sPHENIX20

Grid size:

Rad = 0.75 cm

Phi = 360 deg

Lon = 0.64 cm

sPHENIX30

Grid size:

Rad = 0.63 cm

Phi = 360 deg

Lon = 0.64 cm

Estimated mean distortions in R

More on Initial Charge Density and the Strategy for Quantification of Residuals

Initial Charge Density: Method 2

 Initial Charge Density was modelled so far using phenomenological expression from ALICE

 As such many control variables like "gas factor", "multiplicity", "ion-feedback" are used heuristically.

 To gain full control on the gas response and realistic track density, it is desirable to model this from First Principles.

Very preliminary

Flow Chart for new Initial Charge Density

Collision by collision electron/ion followup to model more accurately the ICD

- Ion latency time period (to account for gas and E field)
- Particle density distribution from MB events from generator

Strategy in Analysis of Distortions

- Determine mean distortions as function of Luminosity
- Determine single event distortions (fluctuations)
 - Particle multiplicity
 - Inaccuracy in Luminosity
 - Inaccuracy in IBF percentage (inaccuracy in gain)

See Alan's slides (or backup) for the plan of inclusion of these effects into sPHENIX tracking framework.

BACKUP

Factorization of the Space Charge Problem

Basic Approach to Solving the Cylinder

The problem at hand is this: $\Delta G(\vec{x}, \vec{x}) = -\delta(\vec{x} - \vec{x}),$ (5.13)

$$\left[\frac{\partial^2}{\partial r^2} + \frac{1}{r}\frac{\partial}{\partial r} + \frac{1}{r^2}\frac{\partial^2}{\partial \phi^2} + \frac{\partial^2}{\partial z^2}\right]G(r,\phi,z;r',\phi',z') = \\ -\frac{\delta(r-r')}{r'}\delta(\phi-\phi')\,\delta(z-z'), \ (5.14)$$

Periodicity set m=0,1,2,3,...
$$\Phi_m(\phi) = C_m \ e^{im\phi} = A_m \cos(m\phi) + B_m \sin(m\phi)$$
 with $m \in \mathbb{Z}$.

$$\frac{R_{rr}}{R} + \frac{1}{r} \frac{R_r}{R} - \frac{m^2}{r^2} = -\frac{Z_{zz}}{Z} = \begin{cases} -\beta^2, & \text{case I}; \\ \beta^2, & \text{case II}. \end{cases}$$

Solution without boundary conditions applied:
$$Z_m(z) = C_m \cosh(\beta z) + D_m \sinh(\beta z),$$
 $R_m(r) = E_m J_m(\beta r) + F_m Y_m(\beta r).$

Constants formulated to explicitly vanish at r=a
$$R_{mn}(r) = Y_m(\beta_{mn}a)J_m(\beta_{mn}r) - J_m(\beta_{mn}a)Y_m(\beta_{mn}r)$$
.

Vanishing at r=b forces β to become discreet.

Finishing the solution

Once the solutions to the homogeneous equation are known, we express the Dirac delta function in this basis:

$$\begin{split} \delta(\phi - \phi') &= \frac{1}{2\pi} \sum_{m = -\infty}^{\infty} e^{im(\phi - \phi')} = \frac{1}{2\pi} \sum_{m = 0}^{\infty} (2 - \delta_{m0}) \cos[m(\phi - \phi')], \\ \frac{\delta(r - r')}{r} &= \sum_{n = 1}^{\infty} \frac{R_{mn}(r)R_{mn}(r')}{\bar{N}_{mn}^2} \quad \text{with} \quad \bar{N}_{nm}^2 = \int_a^b R_{mn}^2(r) \ r dr, \\ m &= 0, 1, 2, \dots \end{split}$$

After which the solution is readily obtained:

$$G(r, \phi, z; r', \phi', z') =$$

$$\frac{1}{2\pi} \sum_{m=0}^{\infty} \sum_{n=1}^{\infty} (2 - \delta_{m0}) \cos[m(\phi - \phi')] \frac{R_{mn}(r)R_{mn}(r')}{\bar{N}_{mn}^2} \frac{\sinh(\beta_{mn}z_<) \sinh(\beta_{mn}(L - z_>))}{\beta_{mn} \sinh(\beta_{mn}L)}$$

- Although the solution is correct, it is not assured to be readily convergent.
- Rossegger used three independent basis sets to obtain stable, differentiable, convergent solutions for the r, ϕ , and z components of the field:

$$\frac{\partial}{\partial z}G(r,\phi,z,r',\phi',z') = \\ \frac{1}{2\pi}\sum_{m=0}^{\infty}\sum_{n=1}^{\infty}(2-\delta_{m0})\cos[m(\phi-\phi')]\frac{R_{mn}(r)R_{mn}(r')}{N_{mn}^2}\frac{\partial}{\partial z}\left(\frac{\sinh(\beta_{mn}z_<)\sinh(\beta_{mn}(L-z_>))}{\beta_{mn}\sinh(\beta_{mn}L)}\right),$$

$$(5.64)$$
with
$$\frac{\partial}{\partial z}\left(\sinh(\beta_{mn}z_<)\sinh(\beta_{mn}(L-z_>))\right) = \\ = \begin{cases} \beta_{mn}\cosh(\beta_{mn}z)\sinh(\beta_{mn}(L-z')),\\ -\beta_{mn}\cosh(\beta_{mn}z)\sinh(\beta_{mn}(L-z')),\\ -\beta_{mn}\cosh(\beta_{mn}z)\sinh(\beta_{mn}z),\\ -\beta_{mn}\cosh(\beta_{mn}z),\\ -\beta_{mn}\cosh(\beta_{mn}z)\sinh(\beta_{mn}z),\\ -\beta_{mn}\cosh(\beta_{mn}z)\sinh(\beta_{mn}z),\\ -\beta$$

Initial Charge Density

ALICE

Radial dependence set at 2 Gas factor at 1.0/76628.0 Multiplicity at 900 DC Rate at 50kHz BackFlow at 20 (=1.0%2000)

sPHENIX20

Radial dependence set at 2 Gas factor at 1.0/76628.0 Multiplicity at 450 DC Rate at 50kHz BackFlow at 6 (=0.3%2000)

sPHENIX30

Radial dependence set at 2 Gas factor at 1.0/76628.0 Multiplicity at 450 DC Rate at 50kHz BackFlow at 6 (=0.3%2000)

ChargeDensity [fC/cm^3]

ChargeDensity [fC/cm^3]

120

Longitudinal [cm]

Induced Electric Field

ALICE

Grid size:

Rad = 2.13 cm

Phi = 360 deg

Lon = 2 cm

sPHENIX20

Grid size:

Rad = 0.75 cm

Phi = 360 deg

Lon = 0.64 cm

sPHENIX30

Grid size:

Rad = 0.63 cm

Phi = 360 deg

Lon = 0.64 cm

Comparing with ALICE TDR (1/2)

Comparing with ALICE TDR (2/2)

Traces to pairs

- Ingredients
 - DeltaE for the total track length
 - DeltaE to N ionised electrons

Gas	Ratio	Density*10 ⁻³	Radiation	N _p	N ₁
		(g/cm³)	Length (m)	(cm ⁻¹)	(cm ⁻¹)
Ne-CH ₄	90-10	0.881	361.8	13.45	44
	80-20	0.862	380.4	14.9	45
	70-30	0.843	401	16.35	46
Ne-C ₂ H ₆	90-10	.0944	344	14.9	49.8
	80-20	0.988	343.9	17.8	56.6
	70-30	1.032	343.4	20.7	63.4
Ne-iC₄H ₁₀	90-10	1.06	312	19.2	58.2
	80-20	1.23	285	26.4	73.4
	70-30	1.4	262	33.6	88.6
Ne-CO ₂	90-10	1	317	14.35	47.8
	80-20	1.12	293	16.7	52.6
	70-30	1.22	272	19	57.4
Xe-CH ₄	90-10	5.34	16.6	42.25	281.6
	80-20	4.83	18.6	40.5	256.2
	70-30	4.31	21.2	38.75	230.8
Xe-C ₂ H ₆	90-10	5.4	16.6	43.7	287.4
	80-20	4.95	18.5	43.4	267.8
	70-30	4.5	21	43.1	248.2
Xe-iC ₄ H ₁₀	90-10	5.53	16.5	48	295.8
	80-20	5.2	18.3	52	284.6
	70-30	4.87	20.6	56	273.4
Xe-CO ₂	90-10	5.47	16.5	43.15	285.4
	80-20	5.1	18.4	42.3	263.8
	70-30	4.69	20.7	41.45	242.2

Table 1. (Continued) Parameters of some gas and gas mixtures

For the moment, I parametrised the number of Nt per cm as cte from this table

Integration into sPHENIX software

